Abstracto

The Application of Neural Networks in Predicting Spatial Radiation Environments

Accurately predicting the space radiation environment is crucial for satellite in-orbit management and space science research. A comprehensive neural network model prediction process comprises data analysis, neural network model construction, and the evaluation and validation of model accuracy. Through in-depth data analysis, we can gain a more comprehensive understanding of the distribution, trends, and correlations within the data, providing robust support for selecting a model that best fits the current dataset. Rational construction of the neural network is a key step to ensure the model learns effective information on the training set while performing well on unseen data. Accuracy evaluation also aids in identifying potential overfitting or underfitting issues, guiding further adjustments and improvements to the model. In this paper, we will discuss the application of these key steps in predicting the space radiation environment.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Chemical Abstracts Service (CAS)
Google Académico
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Índice de revistas académicas abiertas (OAJI)
Búsqueda de referencia
Universidad Hamdard
IndianScience.in
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos
Fundación de Ginebra para la educación e investigación médicas
Laboratorios secretos de motores de búsqueda

Ver más