Abstracto

TP-Mine: An Approach to Determine the Transitional Patterns and their Significant Milestones

Radhika Katkum, Harish Kalla, Arun Roy Vadde, Rama Krishna T

A transaction database usually consists of a set of time-stamped transactions. Mining frequent patterns in transaction databases has been studied extensively in data mining research. However, most of existing frequent pattern mining algorithms does not consider the time stamps associated with transactions. We extended the existing frequent pattern mining framework to take into account the time stamp of each transaction and discover patterns whose frequency dramatically changes over time. We define a new type of patterns, called Transitional Patterns, to capture the dynamic behavior of frequent patterns in a transaction database. Transitional patterns include both positive and negative transitional patterns. Their frequencies increase or decrease dramatically at some time points of a transaction database. We introduced the concept of significant milestones for a transitional pattern, which are time points at which the frequency of the pattern changes most significantly. Moreover, we developed an algorithm to mine the set of transitional patterns along with their significant milestones from the transaction database

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Chemical Abstracts Service (CAS)
Google Académico
Open J Gate
Academic Keys
ResearchBible
The Global Impact Factor (GIF)
CiteFactor
Cosmos SI
Biblioteca de revistas electrónicas
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
IndianScience.in
director académico
Publons
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más