Tejas Babaria, Anurag Singhania, Stuti Khaitan, Tejaswi, P L Muralidhara, Jagadish H Patil
Mobil crystalline material is a unique material that has propertiesof high surface area, narrow pore size distribution, high thermal stability and has wide applications in the areas of nanoscience, catalysis, environmental engineering, and adsorption and drug delivery. The present work explores to synthesizemobil crystalline material economically using free and abundantly availablerice husk as silica source and cetyltrimethyl ammonium bromide as surfactant. The product was characterized by Fourier Transform Infrared Spectroscopy (1073.91 cm-1), Nitrogen adsorption-desorption technique (2181.7 cm2/gm), pore size (27 nm) and X-ray diffraction technique (2.6oof 2θ value). The characterizations reveal the product synthesized was agood mobil crystalline material that has mesoporous molecular sieve with good adsorbing capacity.