Saman Mushir, Satyanarayan Deep, Tasneem Fatma
Cyanobacteria has evolved the capacity to synthesize, mount up and metabolize scytonemin a photoprotective pigment as a part of an overall tactic to taper the unswerving and oblique destructive effects of environmental ultraviolet radiation (UVR) due to the deterioration of ozone layer attributable to the release of pollution containing the chemicals chlorine and bromine. Scytonemin is an indole phenolic pigment found in the sheath of many cyanobacteria having a unique dimeric structure, ecological importance and novel pharmaceutical activity have enthused substantial pursuit in its biosynthesis. This study includes the screening of scytonemin from 46 studied cyanobacterial strains out of which 23 showed the presence of scytonemin. Aulosira fertilissima showed the maximum scytonemin. The effect of environmental factors, including Light intensity, photoperiod, UV-light was studied on scytonemin synthesis of A. fertilissima. A remarkable change in scytonemin synthesis was observed under UV-light stress. Scytonemin increased under all stress conditions but it increased maximally under UV-light stress