Abstracto

Recommendation System for High Utility Itemsets over Incremental Dataset

J K Kavitha, U Kanimozhi, D Manjula

Mining high utility itemsets has gained much significance in the recent years. When the data arrives sporadically, incremental and interactive utility mining approaches can be adopted to handle users� dynamic environmental needs and avoid redundancies, using previous data structures and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests high utility itemsets over dynamic datasets for a location prediction strategy to predict users� trajectories using the Fast Update Utility Pattern Tree (FUUP) approach. Through comprehensive evaluations by experiments this scheme has shown to deliver excellent performance.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más