Abstracto

Privacy Preserving Clustering Based on Discrete Cosine Transformation

M. Naga lakshmi, K Sandhya Rani

The information related to an individual or an organization could be compromised when the patterns extracted from large databases through data mining technology. Privacy preserving data mining which is a new research area has been evolved in order to find the right balance between maximizing analysis results and minimizing the disclosure of private information. In this paper, a Discrete Cosine Transformation (DCT) based data distortion method is proposed for privacy preserving clustering in centralized database environment. The experimental results proved that the proposed method efficiently protects the private data of individuals and retains the important information for clustering analysis.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más