Arivarasan S
The evolution of ontologies is an undisputed necessity in ontology-based data integration. Yet, few research efforts have focused on addressing the need to reflect the evolution of ontologies used as global schemata onto the underlying data integration systems. In most of these approaches, when ontologies change their relations with the data sources, i.e., the mappings, are recreated manually, a process which is known to be error-prone and time-consuming. In this paper, we provide a solution that allows query answering in data integration systems under evolving ontologies without mapping redefinition. This is achieved by rewriting queries among ontology versions and then forwarding them to the underlying data integration systems to be answered. To this purpose, initially, we automatically detect and describe the changes among ontology versions using a high level language of changes. Those changes are interpreted as sound globalas- view (GAV) mappings, and they are used in order to produce equivalent rewritings among ontology versions. Whenever equivalent rewritings cannot be produced we a) guide query redefinition or b) provide the best ‘‘overapproximations’’, i.e., the minimally-containing and minimally-generalized rewritings. We prove that our approach imposes only a small overhead over traditional query rewriting algorithms and it is modular and scalable. Finally, we show that it can greatly reduce human effort spent since continuous mapping redefinition is no longer necessary