Abstracto

Offline Kannada Handwritten Word Recognition Using Locality Preserving Projection (LPP) for Feature Extraction

M.S. Patel, Rohith Kumar, S.C. Linga Reddy

Offline Handwritten Word Recognition (HWR) plays a major role in the field of image processing and pattern recognition. Compared to online recognition, handwritten words cannot be identified easily because of the variations in the handwriting styles, type of paper used, quality of the scanner etc. In our paper we have focused on the Kannada handwritten word recognition. Large number of characters present in the Kannada language makes it as a open problem for the researchers. Major steps in offline Kannada HWR are preprocessing, feature extraction, and classification. Locality Preserving Projections (LPP) method is used here for the feature extraction. For the classification Support Vector Machines (SVM) is used. Result is compared with the K-Means classifier. Experimental results show that SVM is better than K-Means classifier for our data set.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más