Abstracto

New innovation in renewable energy provided by the organic solar cells based on 3-aryl-4-hydroxyquinolin-2-(1H)-one. Correlation-Structure/electronic properties

Majdouline Larif, Ali Zahlou, Samir Chtita, Lahcen Bejjit, Mohammed Bouachrine, Tahar Lakhlifi

Fatty acid synthase (FAS), an essential enzyme for de novo lipogenesis, has been implicated in a number of disease states, including obesity, dyslipidemia and cancer. The research in new pi-conjugated molecules with specific applications has become one of the most interesting topics in the fields of chemical physics and materials science. The use of low band gap materials is a viable method for a better harvesting of the solar spectrum and an improved raise of its efficiency. The control of this parameter of these materials is a research issue of ongoing interest. In this work a quantum chemical investigation has been performed to explore the optical and electronic properties of a series of different compounds based on 3-aryl-4-hydroxyquinolin-2-(1H)-one. Different electron side groups were introduced to investigate their effects on the electronic structure. The theoretical knowledge of the HOMO and LUMO energy levels of the components is basic in studying organic solar cells so the HOMO, LUMO and energy Gap of the studied compounds have been calculated and reported. These properties suggest these materials as good candidates for organic solar cells.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más