Abstracto

Modeling of Power Electronic Controller Using Incremental Conductance Algorithm for Solar-Cell Based Distributed Generation

S.Rajalingam , V.Karelmarx

Nowadays power demand is high for utilizing more amount of power for various types of loads in the distribution system. This paper deals with implementation of solar power for standalone distributed generation system for commercial loads. The optimal placement of solar array is essential for standalone distributed generation (DG) system. The proposed system focuses on the design of the solar array with boost converter for achieving high power for standalone system. It uses suitable power electronic devices for improving the power quality, voltage regulation and reducing the ripple voltage and current. The electricity can be generated from solar energy and that can be supplied to the commercial loads. The power quality problems will be reduced with the help of Suitable control algorithm (Incremental conductance algorithm). The presented scheme portrays modeling of solar cell and experimental results have been demonstrated achieving high performance and reliability. The proposed system topology and its control strategy are designed and analyzed by using MATLAB/Simulink tool.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más