Abstracto

Information Loss Reduction in Data Hiding using Visual Sensing Parameter Training Application

Shahin Shafei

The Human Visual System (HVS) is incredibly variable from one person to another and even under different conditions for the same person. Parameterizing allows for this -personalization� while maintaining the familiar property that, if a visually -fine� image is added to another visually -fine� image, the result should also be -fine.� we find that the separate operations generally work best when the parameter values are the same by insuring a visually pleasing result, this should help to improve image enhancement performance. Similar training methods have been introduced in the past and used for a number of applications. Further, we find that good results can be obtained without training the system for individual images, however by utilizing the training system on a specific problem one may have the best results.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Chemical Abstracts Service (CAS)
Google Académico
Open J Gate
Academic Keys
ResearchBible
The Global Impact Factor (GIF)
CiteFactor
Cosmos SI
Biblioteca de revistas electrónicas
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
IndianScience.in
director académico
Publons
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más