Abstracto

Identifying Security Evaluation of Pattern Classifiers Under attack

S.P.Mohana Priya, S.Pothumani

Pattern classification is a branch of machine learning that focuses on recognition of patterns and regularities in data. In adversarial applications like biometric authentication, spam filtering, network intrusion detection the pattern classification systems are used. As this adversarial scenario is not taken into account by classical design methods, pattern classification systems may exhibit vulnerabilities, whose exploitation may severely affect their performance, and consequently limit their practical utility. Extending pattern classification theory and design methods to adversarial settings is thus a novel and very relevant research direction, which has not yet been pursued in a systematic way. We propose a framework for evaluation of pattern security,model of adversary for defining any attack scenario. Reported results show that security evaluation can provide a more complete understanding of the classifier’s behavior in adversarial environments, and lead to better design choices

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más