Y.Suresh, S.Annapurna, A.K.Singh, G.Bhikshamaiah
Copper nanoparticles were prepared via a simple green chemical reduction method. This method was proved to be an efficient method for the preparation of copper nanoparticles at around room temperature without using any inert atmosphere. The synthesized copper nanoparticles were characterized by using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), UV-Visible Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) experimental methods. The resulted copper nanoparticles were FCC crystalline with an average particle size 5 nm. The UV absorption peak found at around 578 nm was assigned to the absorption of copper nanoparticles. The FTIR spectra showed that the thin layer of tea decoction molecule was developed on the surface of copper nanoparticle that protects it from oxidation for about 25 days.