Abstracto

Friend Recommendation on Social Network Site Based on their Life Style

Ramya R, Bonshia Binu

Social network sites attracted millions of users. In the social network sites, a user can register other users as friends and enjoy communication. Existing social networking sites recommend friends to users based on their social graphs, which may not be appropriate. In proposed system friends recommends to users based on their life styles instead of social graphs. It done by means of sensor rich smart- phone serve as the ideal platform for sensing daily routines from which people’s life styles could be discovered. Unsupervised learning method is used. Achieve an efficient activity Recognition and reduce the false positive of Friend Recommendation. Friendbook integrates a feedback mechanism. Finally the results show that the recommendations accurately reflect the preferences of users in choosing friends.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Chemical Abstracts Service (CAS)
Google Académico
Open J Gate
Academic Keys
ResearchBible
The Global Impact Factor (GIF)
CiteFactor
Cosmos SI
Biblioteca de revistas electrónicas
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
IndianScience.in
director académico
Publons
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más