B. Ramesh, A. Elayaperumal, R. Venkatesh, S. Madhav, Kamal Jain
With the more demands of modern engineering products with utmost precision and productivity, the control of surface roughness (Ra) together with Material Removal Rate (MRR) have become more significant. This paper optimizes the process parameters (spindle speed, feed and depth of cut) for beryllium copper alloy (C17200) in conventional vertical milling operation using a 6 mm carbide end mill. The experiments were conducted by using Response Surface Methodology (RSM) face centered central composite design. The experimental values obtained for quality characteristics (Ra and MRR) are empirically related to process parameters by developing a response surface model using Design-Expert version 7 software. The results show that the optimal parameter levels within the selected range for machining a straight groove with both lower Ra and higher MRR in the plate of beryllium copper alloy using CNC Vertical Machining Centre (VMC) are 4416 rpm spindle speed, 0.49 mm/rev feed and 2 mm depth of cut.