Abstracto

Designing Power System Stabilizer for System Damping for Transient Disturbances Using Grey ANFIS Technique

Pratibha Srivastav, Manoj Kumar Jha, M.F. Qureshi

This paper describes a design procedure for a Grey ANFIS based power system stabilizer (GrANFISPSS) and investigates their robustness for a multi-machine power system. Speed deviation of a machine and its derivative are chosen as the input signals to the GrANFIS-PSS. A four-machine and a two-area power system is used as the case study. Computer simulations for the test system subjected to transient disturbances i.e. a three phase fault, were carried out and the results showed that the proposed controller is able to prove its effectiveness and improve the system damping when compared to a conventional lead-lag based power system stabilizer controller. The simulation result shows that the GrANFIS-PSS can be designed to achieve good performance merely using the combination of Grey prediction and Adaptive Neuro-Fuzzy Inference System (ANFIS). GrANFIS-PSS is designed to damp out the low frequency local and inter-area oscillations of the Multi-machine power system. By applying this GrANFIS-PSS to the power system the damping of inter-area modes of oscillations in a multi-machine power system is handled properly. The effectiveness of the proposed GrANFIS-PSS is demonstrated on two area four machine power system (Kundur system), which has provided a comprehensive evaluation of the learning control performance. Finally, several fault and load disturbance simulation results are presented to stress the effectiveness of the proposed GrANFIS-PSS in a multimachine power system and show that the proposed intelligent controls improve the dynamic performance of the GrANFIS-PSS and the associated power network

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más