Abstracto

Content Based Image Retrieval (CBIR) Using Segmentation Process

R.Gnanaraja, B. Jagadishkumar, S.T. Premkumar, B. Sunil kumar

Mining of Structured representations in content based image retrieval is a popular research topic in many useful applications. In the last decade there has been an explosion of interest in mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. The initial work focused mainly on values with tags, while most of the recent development focuses on discovering association rule among tree structured data objects to preserve the structural information. In this paper we combined the techniques of texture based segmentation algorithm, Blob reduction by identifying outlier’s detection, SIFT algorithm to an automatic system to annotate and retrieve images. This paper tend to reveal a good behaviour in classification of our graph based solution on two publicly available databases and produce the images features with more enhancement by an efficient segmentation algorithm.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más