Abstracto

Computer Aided Detection Of Ischemic Stroke Using Cellular Automata

Teena Thomas, Jobin Jose

Computed tomography images are widely used in the diagnosis of ischemic stroke because of its faster acquisition and compatibility with most life support devices. This paper presents a new approach to automated detection of ischemic stroke using cellular automata, midline shift and image feature characteristics, which separate the ischemic stroke region from healthy tissues in computed tomography images. The proposed method consists of five stages namely, preprocessing, segmentation, tracing midline of the brain, extraction of texture features and classification. The application of the proposed method for early detection of ischemic stroke is demonstrated to improve efficiency and accuracy of clinical practice. The results are quantitatively evaluated by a human expert.. A classification with accuracy of 98%,has been obtained by SVM.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más