Abstracto

BOUNDS OF THE NUMBER OF LEVEL CROSSINGS OF THE RANDOM ALGEBRAIC POLYNOMIALS

A.K. MANSINGH & DR. P.K.MISHRA

In this paper we have estimate bounds of the number of level crossings of the random algebraic polynomials     n k k n k f x a t x 0 ( ,1) ( ) 0 where ak (t)  t,0  t 1, are dependent random variables assuming real values only and following the normal distribution with mean zero and joint density function M    M  a s (2 ) exp ( 1/ 2) ' 1/ 2 /   . There exists an integer n0 and a set E of measure at most A/(log n0log log log n0) such that, for each n>n0 and all not belonging to E, the equations (1.1) satisfying the condition (1.2), have at most (log log n) log n 2  roots where α and A are constants.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Academic Keys
ResearchBible
CiteFactor
Cosmos SI
Búsqueda de referencia
Universidad Hamdard
Catálogo mundial de revistas científicas
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más