R.Prasanna, Abraham Mathew
A QR (Quick Response) code is a special type of barcode that can encode information like numbers, letters, and any other characters. The capacity of a given QR code depends on the version and error correction level, as well as on the type of data that you are encoding. Here the color QR code framework for mobile phone applications by exploiting the spectral diversity afforded by the cyan (C), magenta (M), and yellow (Y) print colorant channels commonly used for color printing and the complementary red (R), green (G), and blue (B) channels, respectively, used for capturing color images. Specifically, the exploitation of this spectral diversity to realize a three-fold increase in the data rate by encoding independent data in the C, M, and Y print colorant channels and decoding the data from the complementary R, G, and B channels. In most cases Reed-Solomon error correction codes will be used for generating error correction codeword’s. Here there is a add bit based channel code is also used along with block based reed Solomon code to increase the interference cancellation rate. Experimental results will show that the proposed framework successfully overcomes both single and burst errors and also providing a low bit error rate and a high decoding rate for each of the colorant channels when used with a corresponding error correction scheme.Colorant channels that provide three different primary colors at RGB mode which select the code that convert the actual value to the proposed frame work that calculates interference cancellation rate. Reed Solomon error correction code is used here which reduces the interference.