Abstracto

Pseudo-Anonymization of Social Networks by Sequential Clustering and Classification

S. Tulasi Krishna, M. Vijaya Bharathi

In these days every one placing the personal data like photos, bio data etc. in so many social sites like face book, Gmail, matrimony etc. but the data is not safe in all conditions this problem is called privacy preserving problem. It provides an anonymized view of the data through a unified network, without revealing information to any of the users. Finally we develop an algorithms which is based on sequential clustering that provides centralized settings. This algorithm works based on the SaNGreeA algorithm, because Campan and Truta which is the leading algorithm for achieving anonymity in networks by means of clustering. The disadvantage of SaNGreeA, it builds clusters gradually. It cannot use actual Information Loss. This information loss will be evaluated only when all of the clusters are defined. So it contains structural information loss. But in Sequential clustering algorithm overcome this problem. In this algorithm makes decisions based on the measure of real information loss. Finally it gives a framework to classify the data with less information loss.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.