Abstracto

IMPROVING THE CLASSIFICATION ACCURACY USING SUPPORT VECTOR MACHINES (SVMS) WITH NEW KERNEL

Ashraf Afifi and E.A.Zanaty, Said Ghoniemy

In this paper, we introduce a new kernel function called polynomial radial basis function (PRBF) that could improve the classification accuracy of support vector machines (SVMs). The proposed kernel function combines both Gauss (RBF) and Polynomial (POLY) kernels and is stated in general form. It is shown that the proposed kernel converges faster than the Gauss and Polynomial kernels. The accuracy of the proposed algorithm is compared to algorithms based on both Gaussian and polynomial kernels by application to a variety of non-separable data sets with several attributes. We noted that the proposed kernel gives good classification accuracy in nearly all the data sets, especially those of high dimensions.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.

Indexado en

Google Académico
Academic Journals Database
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Biblioteca de revistas electrónicas
Búsqueda de referencia
Universidad Hamdard
director académico
Factor de impacto de revistas innovadoras internacionales (IIJIF)
Instituto Internacional de Investigación Organizada (I2OR)
Cosmos

Ver más