Abstracto

Identifying Prevelance Flood Attacks in Delay Tolerant Networks

C.Gnana Prakash, K.Shanthi

A distributed scheme to detect if a node has debased its rate limits. To address the challenge that it is difficult to count all the packets or replicas sent by a node due to lack of statement infrastructure, our detection adopts claim-carry-and check: each node itself counts the number of packets or replicas that it has sent and claims the count to other nodes; the getting nodes carry the claims when they move, and cross-check if their carried claims are inconsistent when they contact. The claim structure uses the pigeonhole standard to guarantee that an attacker will make conflicting claims which may lead to discovery. We present rigorous analysis on the probability of detection, and assess the effectiveness and efficiency of our scheme with extensive trace driven simulations. Using Lyapunov optimization, we extend this examination to design a utility Maximizing algorithm that uses explicit delay information from the head-ofline packet at each user. The consequential policy is shown to ensure deterministic worst-case delay guarantees and to yield a throughput utility that differs from the optimally fair value by an amount that is inversely proportional to the delay guarantee. Our results hold for a general class of 1-hop networks, including packet switches and multiuser wireless systems with time varying reliability.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.